Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Med Mycol ; 61(6)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20234417

ABSTRACT

The decision to use voriconazole for suspected COVID-19-associated pulmonary aspergillosis (CAPA) is based on clinical judgement weighed against concerns about its potential toxicity. We assessed the safety profile of voriconazole for patients with suspected CAPA by conducting a retrospective study of patients across two intensive care units. We compared changes in any liver enzymes or bilirubin and any new or increasing corrected QT interval (QTc) prolongation following voriconazole use to patient baseline to indicate possible drug effect. In total, 48 patients with presumed CAPA treated with voriconazole were identified. Voriconazole therapy was administered for a median of 8 days (interquartile range [IQR] 5-22) and the median level was 1.86 mg/L (IQR 1.22-2.94). At baseline, 2% of patients had a hepatocellular injury profile, 54% had a cholestatic injury profile, and 21% had a mixed injury profile. There were no statistically significant changes in liver function tests over the first 7 days after voriconazole initiation. At day 28, there was a significant increase in alkaline phospahte only (81-122 U/L, P = 0.006), driven by changes in patients with baseline cholestatic injury. In contrast, patients with baseline hepatocellular or mixed injury had a significant decrease in alanine transaminase and aspartate transaminase. Baseline QTc was 437 ms and remained unchanged after 7 days of voriconazole therapy even after sensitivity analysis for concomitantly administered QT prolonging agents. Therefore, at the doses used in this study, we did not detect evidence of significant liver or cardiac toxicity related to voriconazole use. Such information can be used to assist clinicians in the decision to initiate such treatment.


Our study did not show significant voriconazole-related liver or cardiac side effects in a critically ill cohort of patients with suspected COVID-19-associated pulmonary aspergillosis. These findings may allay specific clinician concerns when commencing therapy for such patients.


Subject(s)
COVID-19 , Pulmonary Aspergillosis , Animals , Voriconazole/adverse effects , Antifungal Agents/adverse effects , Retrospective Studies , Triazoles/adverse effects , COVID-19/veterinary , Pulmonary Aspergillosis/drug therapy , Pulmonary Aspergillosis/veterinary
2.
Mycoses ; 66(8): 688-696, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2300604

ABSTRACT

BACKGROUND: The role of nebulized amphotericin B (NAB) in managing pulmonary mucormycosis (PM) is unknown. METHODS: In this open-label trial, we randomized PM subjects to receive either intravenous liposomal amphotericin B (control arm, 3-5 mg/kg/day) alone or along with nebulized amphotericin B deoxycholate (NAB, 10 mg twice a day, every alternate day). The primary outcomes were: (1) overall response ('success' [complete or partial response] or 'failure' [stable disease, progressive disease, or death]) at 6 weeks; and (2) the proportion of subjects with adverse events (AE). The key secondary outcome was 90-day mortality. We performed a modified intention-to-treat (mITT) analysis where we included only subjects receiving at least a single dose of NAB. RESULTS: Fifteen and 17 subjects were randomized to the control and NAB arms; two died before the first dose of NAB. Finally, we included 30 subjects (15 in each arm; mean age 49.8 years; 80% men) for the mITT analysis. Diabetes mellitus (n = 27; 16/27 were COVID-19-associated PM) was the most common predisposing factor. The overall treatment success was not significantly different between the control and the NAB arms (71.4% vs. 53.3%; p = .45). Twenty-nine subjects experienced any AE, but none discontinued treatment. The 90-day mortality was not significantly different between the control (28.6%) and NAB arm (53.3%; p = .26). CONCLUSION: Adjunctive NAB was safe but did not improve overall response at 6 weeks. A different dosing schedule or nebulized liposomal amphotericin B may still need evaluation. More research is needed to explore other treatment options for PM.


Subject(s)
COVID-19 , Mucormycosis , Male , Humans , Middle Aged , Female , Amphotericin B/adverse effects , Antifungal Agents/adverse effects , Mucormycosis/drug therapy
3.
BMC Nephrol ; 23(1): 132, 2022 04 05.
Article in English | MEDLINE | ID: covidwho-1846807

ABSTRACT

BACKGROUND: In the light of recent years, an increase in the number of life-threatening infections due to various fungi has been observed, especially in tertiary care centres. With Amphotericin B labelled as the first choice in treating these infections, one of its common side effects, nephrotoxicity, along with hypokalemia, were studied to determine the epidemiology, risk factors, and protective measures. METHODOLOGY: The study was a retrospective observational chart review study in which patients were receiving conventional Amphotericin B in two tertiary hospitals in Palestine from January 2018 to December 2020 were evaluated for the development of hypokalemia and nephrotoxicity; according to the KDIGO criteria. A total of 117 patients were included in the study. Patients who have received the drug intermittently, in fewer than two doses, through non-IV routes and patients under the age of 12 were excluded. The data collected included, but were not limited to, age, gender, comorbidities, Amphotericin B treatment details, medications, COVID-19 status, risk factors, and hypothesized protective measures. RESULTS: The incidence of conventional Amphotericin B nephrotoxicity and hypokalemia was 46% and 33%, respectively. With a roughly equal representation of both genders and a median age of 52 years in a range of 13-89. No association between the variables and the development of nephrotoxicity was found. However, a 3.4 increased risk (p-value = 0.01) of developing hypokalemia in females compared to males was observed. CONCLUSION: Our research has shown a relatively lower yet consistent, incidence of conventional amphotericin B nephrotoxicity and hypokalemia compared to literature with gender being a risk factor for developing hypokalemia.


Subject(s)
Amphotericin B , COVID-19 , Adolescent , Adult , Aged , Aged, 80 and over , Amphotericin B/adverse effects , Antifungal Agents/adverse effects , Female , Humans , Male , Middle Aged , Retrospective Studies , Tertiary Care Centers , Young Adult
4.
Expert Opin Pharmacother ; 23(5): 543-549, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1662063

ABSTRACT

INTRODUCTION: Invasive aspergillosis is associated with high morbidity and mortality in immunocompromised patients. It is now increasingly reported in critically ill patients, including those with respiratory viral infections, such as influenza and COVID-19. Antifungal management is challenging due to diagnostic delay, adverse drug reactions, drug-drug interactions, narrow therapeutic window, and the emergence of resistance. Isavuconazole is the most recent FDA approved azole for the treatment of invasive aspergillosis, with data continuing to accumulate. AREAS COVERED: The authors review the safety and efficacy of isavuconazole in the management of invasive aspergillosis based on the currently available evidence. The authors also report on the structure, mechanism of action, pharmacokinetic properties, in vitro and in vivo studies as well as clinical safety and efficacy reports of isavuconazole since its FDA approval. EXPERT OPINION: Isavuconazole is non-inferior to voriconazole and is a safe, effective, and better tolerated option for the treatment of invasive aspergillosis. It offers several advantages over other antifungal agents, including having a better adverse event profile with respect to hepatotoxicity, neuro-visual toxicity, QTc prolongation, as well as a stable pharmacokinetic profile obviating the need for therapeutic drug monitoring. Further studies are needed to evaluate its performance in prophylaxis against invasive aspergillosis as well as in the treatment of aspergillosis in critically ill patients without underlying cancer or transplant.


Subject(s)
Aspergillosis , COVID-19 Drug Treatment , Antifungal Agents/adverse effects , Aspergillosis/chemically induced , Aspergillosis/drug therapy , Delayed Diagnosis , Humans , Nitriles/adverse effects , Pyridines , Triazoles/adverse effects
6.
PLoS One ; 16(11): e0260656, 2021.
Article in English | MEDLINE | ID: covidwho-1533423

ABSTRACT

Therapeutic drug monitoring (TDM) is essential for voriconazole to ensure optimal drug exposure, mainly in critically ill patients for whom voriconazole demonstrated a large variability. The study aimed at describing factors associated with trough voriconazole concentrations in critically ill patients and evaluating the impact of voriconazole concentrations on adverse effects. A 2-year retrospective multicenter cohort study (NCT04502771) was conducted in six intensive care units. Adult patients who had at least one voriconazole TDM were included. Univariable and multivariable linear regression analyses were performed to identify predictors of voriconazole concentrations, and univariable logistic regression analysis, to study the relationship between voriconazole concentrations and adverse effects. During the 2-year study period, 70 patients were included. Optimal trough voriconazole concentrations were reported in 37 patients (52.8%), subtherapeutic in 20 (28.6%), and supratherapeutic in 13 (18.6%). Adverse effects were reported in six (8.6%) patients. SOFA score was identified as a factor associated with an increase in voriconazole concentration (p = 0.025), mainly in the group of patients who had SOFA score ≥ 10. Moreover, an increase in voriconazole concentration was shown to be a risk factor for occurrence of adverse effects (p = 0.011). In that respect, critically ill patients who received voriconazole treatment must benefit from a TDM, particularly if they have a SOFA score ≥ 10. Indeed, identifying patients who are overdosed will help to prevent voriconazole related adverse effects. This result is of utmost importance given the recognized COVID-19-associated pulmonary aspergillosis in ICU patients for whom voriconazole is among the recommended first-line treatment.


Subject(s)
Antifungal Agents/administration & dosage , Critical Illness/therapy , Drug Monitoring/methods , Drug-Related Side Effects and Adverse Reactions/epidemiology , Intensive Care Units/statistics & numerical data , Voriconazole/administration & dosage , Antifungal Agents/adverse effects , Female , France/epidemiology , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Voriconazole/adverse effects
7.
Drugs ; 81(15): 1703-1729, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1491481

ABSTRACT

The epidemiology of invasive fungal infections is changing, with new populations at risk and the emergence of resistance caused by the selective pressure from increased usage of antifungal agents in prophylaxis, empiric therapy, and agriculture. Limited antifungal therapeutic options are further challenged by drug-drug interactions, toxicity, and constraints in administration routes. Despite the need for more antifungal drug options, no new classes of antifungal drugs have become available over the last 2 decades, and only one single new agent from a known antifungal class has been approved in the last decade. Nevertheless, there is hope on the horizon, with a number of new antifungal classes in late-stage clinical development. In this review, we describe the mechanisms of drug resistance employed by fungi and extensively discuss the most promising drugs in development, including fosmanogepix (a novel Gwt1 enzyme inhibitor), ibrexafungerp (a first-in-class triterpenoid), olorofim (a novel dihyroorotate dehydrogenase enzyme inhibitor), opelconazole (a novel triazole optimized for inhalation), and rezafungin (an echinocandin designed to be dosed once weekly). We focus on the mechanism of action and pharmacokinetics, as well as the spectrum of activity and stages of clinical development. We also highlight the potential future role of these drugs and unmet needs.


Subject(s)
Antifungal Agents/pharmacology , Fungi/drug effects , Invasive Fungal Infections/drug therapy , Animals , Antifungal Agents/adverse effects , Antifungal Agents/classification , Drug Development , Drug Interactions , Drug Resistance, Fungal , Humans , Invasive Fungal Infections/microbiology
8.
Am J Case Rep ; 22: e932544, 2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1350539

ABSTRACT

BACKGROUND Fusarium spp. is a rare cause of opportunistic life-threatening fungal infections. It has a remarkably high resistance profile with few effective antifungal agents, mostly limited to voriconazole and liposomal amphotericin B. Drug-induced liver injury (DILI) by 1 of these 2 antifungal agents further complicates the management of these infections. CASE REPORT A 38-year-old woman with short bowel syndrome presented to the hospital with concerns of abdominal pain and loose stools. An abdominal CT was negative for inflammatory or ischemic bowel disease, and there was no evidence of liver disease. She tested positive for SARS-CoV-2 and required transfer to the ICU due to hypotension requiring fluid resuscitation and vasopressors. On day 43 of her admission, the patient developed a low-grade fever, for which she underwent central-line and peripheral-blood cultures that were positive for Fusarium dimerum. The central line was removed and i.v. voriconazole started. After 3 days of treatment, the patient's liver enzymes rose abruptly. Voriconazole was discontinued and replaced with liposomal amphotericin B, and the liver enzymes improved significantly. The patient completed 14 days of therapy and was discharged from the hospital. CONCLUSIONS This is a case of F. dimerum infection followed by DILI from voriconazole treatment. Her infection was resolved after switching to liposomal amphotericin B, with improvement in liver enzymes on day 1 after discontinuing voriconazole. This observation demonstrates that altering antifungal classes may be an appropriate strategy when confronted with DILI.


Subject(s)
COVID-19 , Chemical and Drug Induced Liver Injury , Fusarium , Sepsis , Adult , Amphotericin B/adverse effects , Antifungal Agents/adverse effects , Chemical and Drug Induced Liver Injury/etiology , Female , Humans , SARS-CoV-2 , Sepsis/drug therapy , Voriconazole/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL